494. Target Sum
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols+
and-
. For each integer, you should choose one from+
and-
as its new symbol.
Find out how many ways to assign symbols to make sum of integers equal to target S.
Example 1:
Input:
nums is [1, 1, 1, 1, 1], S is 3.
Output:
5
Explanation:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
There are 5 ways to assign symbols to make the sum of nums be target 3.
Note:
- The length of the given array is positive and will not exceed 20.
- The sum of elements in the given array will not exceed 1000.
- Your output answer is guaranteed to be fitted in a 32-bit integer.
Solution: before each number, the sign can either - or +. For each incoming new number the final result is diverged into two directions. We can have a 2D dp array, each element int[i][j] is to store until i, the sum is j, the number of ways of arrangements.
public int findTargetSumWays(int[] nums, int S) {
int[][] dp = new int[nums.length][2001];
return helper(nums, 0, S, dp);
}
private int helper(int[] nums, int start, int S, int[][] dp) {
if (S < -1000 || S > 1000) {
return 0;
}
if (start >= nums.length) {
return S == 0 ? 1 : 0;
}
if (dp[start][S + 1000] == 0) {
dp[start][S + 1000] = helper(nums, start + 1, S - nums[start], dp) + helper(nums, start + 1, S + nums[start], dp);
}
return dp[start][S + 1000];
}